\[ \epsilon = \epsilon_{\infty} - \frac{f_0 \cdot \omega_p^2}{\omega^2 - i \omega \gamma} + \sum_j \frac{f_j \cdot \omega_{p}^2}{\omega_j^2 - \omega^2 + i \omega \gamma_j} \]
\( \epsilon_\infty = \) | \(m^* = \) \( m_e \) | \(\omega_p = \) \([\mathrm{eV}]\) |
\(f_0 = \) \([\mathrm{eV}]\) | \(\omega_0 = 0 \) \([\mathrm{eV}]\) | \(\gamma_0 = \) \([\mathrm{eV}]\) |
\(f_1 = \) \([\mathrm{eV}]\) | \(\omega_1 = \) \([\mathrm{eV}]\) | \(\gamma_1 = \) \([\mathrm{eV}]\) |
\(f_2 = \) \([\mathrm{eV}]\) | \(\omega_2 = \) \([\mathrm{eV}]\) | \(\gamma_2 = \) \([\mathrm{eV}]\) |
\(f_3 = \) \([\mathrm{eV}]\) | \(\omega_3 = \) \([\mathrm{eV}]\) | \(\gamma_3 = \) \([\mathrm{eV}]\) |
\(f_4 = \) \([\mathrm{eV}]\) | \(\omega_4 = \) \([\mathrm{eV}]\) | \(\gamma_4 = \) \([\mathrm{eV}]\) |
\(f_5 = \) \([\mathrm{eV}]\) | \(\omega_5 = \) \([\mathrm{eV}]\) | \(\gamma_5 = \) \([\mathrm{eV}]\) |